
Radar Emitter Simulation
Using The E8267C PSG
Vector Signal Generator

Application Note

Introduction
Historically, simulating radar emitters has
been an expensive and time consuming
process. However, using off-the-shelf vector
signal generators, it is now possible to
produce the complex pulsed waveforms.
The advent of microwave signal generators
and spectrum analyzers with vector capa-
bility, allows engineers to generate pulsed
microwave signals with precise control
over output power, amplitude envelope,
and modulation within the pulse. These
precision signals can be used as a standard
to evaluate the performance of subsystems
and to troubleshoot system problems. The
devices to be tested are typically radar
warning receivers and elint receivers.

The purpose of this application note is to
help the design engineer generate and
evaluate complex radar signals using
standard microwave test equipment. This
application note shows how MATLAB®

and the Agilent E8267C PSG vector signal
generator can be used to create signals
and simulate complex radar emitters. The
appendices contain the complete MATLAB
code for generating the pulse signals
described in this application note.

Experience has shown that this type of
series of complex pulse patterns will
enable the user to perform roughly 80%
of the tests necessary to evaluate the per-
formance of an electronic warfare system.
The final 20% of the receiver testing is
typically done on a test range using real
emitters.

Table of Contents
Introduction .1
Equipment Configuration .2

Vector performance signal generator
Software programming tools
Performance Spectrum Analyzer

Generating a Simple Pulse .2
Generating a signal
Setting the clock
Pulse width and repetition

Controlling output power .4
Automatic loop control
Scaling factor
Calibration
Running Pulse.m

Generating a Pulse Doublet (Doublet.m) .8
Generating Phase Shift Between Pulses (PM_Doublet.m) .9
Creating Doppler Shift (Doppler.m) .10
Building Pulse Compression Signals .12
Generating a Barker Coded Pulse (Barker.m) .13
Generating a Linear FM Chirp (LFM_Chirp.m) .14
Generating a Non-Linear FM Chirp (NLFM_Chirp.m) .16
Appendices .17

A. Simple pulse
B. Pulse doublet
C. Pulse doublet with phase offset
D. Pulse with doppler frequency offset
E. Pulse with barker code
F. Pulse with linear fm chirp
G. Pulse with non-linear fm chirp

2

The general-purpose test equipment needed to evaluate a receiver requires two key com-
ponents: a microwave signal generator capable of producing the signals required for the
test, and a microwave spectrum analyzer capable of verifying the signal’s characteristics.
The equipment should cover a frequency range of 0.5–18 GHz. If the receiving system
must process phase or frequency coded pulses, then the generator must be able to pro-
duce these signals.

Vector signal generator
The Agilent E8267C vector signal generator that covers 250 KHz to 20 GHz meets the
needs for a general-purpose signal source to test radar warning receivers and elint
systems. The generator is a member of the ESG/PSG line and provides excellent output
power, low phase noise option, analog modulation, and digital communication modulation
common to that line. The generator also provides I/Q modulation with an internal arbitrary
waveform generator providing 80 MHz of modulation bandwidth. The E8267C’s internal
arbitrary waveform generator to produce complex radar signals.

Software programming tools
Creating custom radar signals requires a software-programming tool capable of dealing
with complex array math and displaying the information in a usable format. While there
are several tools available, MATLAB is widely used and commonly available. Agilent has
chosen to support MATLAB as a waveform builder for the PSG.

To move the digital waveforms from MATLAB into the arbitrary waveform generator
inside the PSG vector signal generator, Agilent has developed Download Assistant. The
program enables users to easily download their IQ waveforms into the arbitrary waveform
generator’s memory. In addition, it allows the user to send any standard commands for
programmable instruments (SCPI) command to the signal generator to control the instrument
state. Download Assistant adds keywords to MATLAB to format and download arrays of
data through common GPIB interface cards or a LAN interface into the signal generator.
The examples used in this paper demonstrate how to use Download Assistant with
MATLAB 6.5 or later revision to create, download, and generate radar signals. Download
Assistant and the programming examples used in this paper can be obtained for free at
the Agilent web site: http://www.agilent.com/find/psg.

Performance spectrum analyzer
To capture and demodulate signals the E4440A PSA Series spectrum analyzer is
used with the 89601A vector signal analysis (VSA) software. This configuration provides
frequency coverage of 26.5 GHz with up to 36 MHz of analysis bandwidth. Wide bandwidth
configurations are also available, refer to http://www.agilent.com/find/89600
for more information.

To adequately test elint receiver performance, a wide variety of test signals are needed.
The user may need to simulate various types of radar emitters or to simulate the multiple
modes of operation for a single type of radar. This requires the test engineer to control
the basic pulse parameters: center frequency, power, pulse width (PW), and pulse repeti-
tion interval (PRI). Doing a reasonable simulation of a simple emitter also requires control
of the rise time and fall time of the pulse. Shaping the rising and falling edge of the pulse
enables the user to control the frequency spectrum of the waveform.

Equipment Configuration

Generating a Simple Pulse

3

Generating a signal
To generate the signal, we will build an array in MATLAB that describes the in-phase and
quadrature time domain waveforms, and download the arrays into the signal generator.
Figure 1 shows a plot of a typical pulsed waveform.

Figure 1: Typical pulsed waveform plot

The following block contains a subset of the code in Pulse.m

In the program, to build the waveform the pulse is broken down into four parts: rise, on,
fall, and off. The on and off sections of the pulse are built using the ones (1,10) and zeros
(1,70) functions. In this case the ones command creates a 1 by 10 array and fills it with 1s.
Likewise, the zeros command creates a 1 by 70 element array and fills it with 0s. This
method provides a simple way to establish the on-time and off-time of the pulse.

sampclk = 100e6; % ARB Sample Clock for playback

n=10; % number of pts in the rise & fall time
ramp=-1:2/n:1-2/n; % ramp from -1 to almost +1 over n pts
rise=(1+sin(ramp*pi/2))/2; % raised cos rise-time shape
on=oneon=ones(1,10); % on-time characteristics
fall=(1+sin(-ramp*pi/2))/2; % raised cos fall-time shape
off=zeros(1,70); % defines the off-time characteristics

% build the pulse envelop
i=[rise on fall off];

% plot the i-samples and scale the plot
plot(i)
axis ([0 length(i) -2 2])

% set the q-samples to all zeroes
q=zeros(1,length(i));

IQData=[i + (j * q)];

4

The rising and falling edges of the pulse are shaped using a raised cosine function. To
build the two cosine waveforms, the program starts by building a linear ramp from –1 to
almost +1, using the function ramp = –1:2/n:1–2/n. For the ramp function, if the linear
ramp were to continue, the point following the last point in the array would be exactly 1.
Ramp functions are often multiplied by some multiple of π (represented in MATLAB by
the variable pi) as part of a function to build sine waves. Given that –π and π represent
the exact same point on the unit circle, when the ramp is multiplied by π and the sine or
cosine taken of the array, a perfect sinusoidal waveform is produced. This idea will be
used in several of the example programs.

In the case of the rising edge of the pulse, multiply the ramp with ±π/2 then take the sine
of the result. This will produce the center of the sine wave with a first point of –1 and a
final point of almost +1. Adding one to the result and dividing by two produces the desired
waveform. The final equation takes the form:

rise=(1+sin(ramp*pi/2))/2

The falling edge is simply the negative of the rising edge. The amplitude envelop of the
final pulse is built by concatenating the four arrays using the equation:

i=[rise on fall off]

Figure 2: Final pulse plot

Because the phase of the pulse will be constant in this example, the imaginary portion of
the array is set to zero using the formula:

q=zeros(1,length(i))

A single complex array is built from the two arrays using the formula:
IQData=[i + (j * q)]

Note that multiplying by j in this equation is the equivalent of multiplying by the square
root of –1. This infers that q is the imaginary portion of the waveform. The waveform is
now ready to be downloaded into the signal generator.

5

Setting the clock
The variable smplclk = 100e6 is used to set the clock frequency for the arbitrary
waveform generator to 100 MHz. This allows time to be associated with each point in the
waveform. Each point within the waveform will occupy 1/smplclk or 10 ns of time. The
important timing characteristics of the pulse can be calculated using this information. The
0% to 100% rise-time and fall-time of the pulse is 10 ns*n or 100 ns where n describes the
number of points in the arrays rise or fall.

While the 0% to 100% is useful during the construction of the waveform, it cannot be
measured accurately on the microwave pulse. The 10% to 90% rise-time is a common
pulse parameter and can easily be measured using standard test equipment. Given that
the rising and falling edges of the pulse are built from raised cosine functions, it can be
shown that the 10% to 90% rise-time is equal to .59 times the 0% to 100% rise-time. In
this case, the 10% to 90% rise-time would equal 59 ns. Thus the rise-time of the pulse
can be set and very accurately calculated by setting the value of n and smplclk.

In general, to insure the final output signal’s rise-time is controlled by the calculated
waveform and not the rise-time of the anti-alias filters following the arbitrary waveform
generator in the signal generator, when the sample clock is set to its maximum value of
100 MHz, use four or more points in the rise-time waveform.

Pulse width and repetition
The pulse width and pulse repetition interval can easily be calculated. Typically, the pulse
width is calculated based on the points 0.5 down from the amplitude of the pulse in a
linear display, or 6 dB down from the amplitude of the pulse in a log display. Because the
raised cosine function is symmetric around this point, the number of points in the 6 dB
pulse width can be exactly calculated as the on-time, plus half of the rise-time, plus half
of the fall time. The equation to calculate the pulse width in seconds would be:

pulse_width=(length(rise)/2)+length(on)+(length(fall)/2))/smplclk

The number of points in the pulse repetition interval is the rise-time, plus the on-time, plus
the fall-time, plus the off-time. The equation to calculate the pulse width in seconds would be:

pulse_repetiton_interval=(length(rise)+length(on)+length(fall)
+length(off))/smplclk

This is an exact calculation and can be used as a standard when evaluating the performance
of the signal processing within a receiver.

Controlling output power
To test a receiver’s performance, it is critical to have known pulse power at the receiver
input. Controlling the output power of the PSG from MATLAB is straightforward. When:

√i2+q2 = 1

the output power of the signal generator will equal the front panel power level. For pur-
poses of this paper, refer to the power level set at the front panel as the reference power
level. For our example waveform, that sets the pulse amplitude in the real array to one and
in the imaginary array to zero. If we set the output power of the signal generator to 0 dBm,
then the peak power of the pulse will equal 0 dBm. The command from MATLAB (which
uses Download Assistant) to set the output power is:

[status, status_description]=agt_sendcommand(io,'POWer 0');

Reducing the amplitude of the waveform below one will reduce the output power.
However there are several scaling factors that must be addressed.

6

Automatic loop control
The first issue to deal with is automatic loop control (ALC) in the output of the signal gen-
erator. This feedback loop is used during the normal operation of a continuous wave (CW)
source to hold the output power at a known level. For pulsed signals generated by the IQ
modulator, the ALC will tend to drive the average power of the signal to equal the refer-
ence power driving the peak power well above the reference power. This becomes a real
problem when the signal becomes more complex. It is good practice to turn off the ALC by
putting the calibration process into manual mode. This can be done from the front panel
of the instrument or from MATLAB. The command in MATLAB (which uses Download
Assistant) to turn off ALC is:

[status, status_description]=agt_sendcommand(io,'POWer:ALC:STATe OFF');

Note that the ALC is part of the signal generator calibration process. Even when the ALC
is turned off, the value for the output gain correction is held (but not updated) in a digital-
to-analog converter and applied to the output. If the ALC is turned off for an extended
period of time, the output calibration may drift. About once per day in laboratory condi-
tions, it is a good practice to turn off the IQ modulation and press the Manual Calibration
softkey under the Power hardkey to update the calibration.

Scaling factor
The second issue to deal with is real time IQ scaling, which is expressed as a linear per-
centage of the reference level. This scaling factor is applied to all IQ waveforms to easily
enable users to specify a known back off for the arbitrary waveform generator drive level
into the IQ modulator. Since the worst-case compression occurs at maximum input power
for the IQ modulator, specifying a value below 100 percent may reduce the non-linear dis-
tortion produced by the IQ modulator. A value of 70 percent will reduce the output power
by 3 dB. The command in MATLAB (which uses Agilent Download Assistant) to set the
real time scaling value is:

[status,status_description]=agt_sendcommand(io,'RADio:ARB:RSCaling100')

Calibration
The final issue to deal with is user calibration. This is a feature that allows the user to
compensate for frequency-dependent loss between the signal generator and the device
under test (DUT). The automatic calibration process within the signal generator uses a
GPIB power meter to measure the power at the DUT input to generate the user calibration
array. When the signal generator is set to a new frequency, the processor within the PSG
will correct for the losses and provide the displayed power at the DUT input. For detailed
information about using this feature, refer to the E8267’s User’s Manual.

7

Running Pulse.m
The file Pulse.m is a complete MATLAB program used to generate and download a simple
pulse into the PSG. A printout of the program can be found in Appendix A.

Note that the pulse parameters were modified from the simple pulse example illustrated
above to produce a more realistic signal. The pulse is 1 ms wide with a pulse repetition
interval of 10 ms. The reference level for the signal generator is set to 0 dBm, but the
peak pulse amplitude of the waveform is set to 0.707, producing an output power of –3
dBm. Figure 3 illustrates the signal.

Figure 3: Screen capture from the VSA signal

The user should be able to justify the displayed results on the analyzer with the MATLAB
program Pulse.m. The upper left hand plot shows the frequency spectrum of the signal.
The upper right hand plot shows the linear amplitude time domain waveform. The lower
left hand plot shows the IQ vector for the signal. The lower right hand plot displays the
phase of the signal versus time. Observe the linear amplitude plot and note that the ampli-
tude of the signal is constant within a single pulse and between pulses. From the phase
plot versus time; note that the phase of the pulse is constant within a single pulse and
between pulses. This infers that the PSG vector signal generator is coherent in frequency
and phase with the vector signal analyzer.

8

Having done the hard work of building a pulsed waveform and describing how each part of
the program operates to create the signal, new waveforms may easily be built to stress
some aspect of the system under test. The next signal is a pulse doublet, which are two
pulses placed very close in time. When testing an elint system, a doublet is used to verify
the ability of the system to correctly identify two closely spaced pulses rather than a sin-
gle long pulse. Often a series of doublets will be created with a different amount of sepa-
ration between each doublet. Also an amplitude change will be introduced between the
pulses to place additional stress on the system.

Generating a pulse doublet using Pulse.m as a starting point is fairly straightforward.
Define three new variables: pulse1, pulse2, and separation. The variables pulse1 and
pulse2 will contain the amplitude envelope of each pulse. The amplitude of each pulse
can be scaled independently of the other. The variable separation will define the number
of points (and the time) between the two pulses. Finally, concatenate the new pulses with
separation between them.

The following block contains a subset of the code in Doublet.m

Figure 4: Screen capture of pulse doublet signal

Generating a Pulse
Doublet (Doublet.m)

separation=zeros(1,128); % separation between the pulses

% define arrays which contain the pulse envelope for each pulse
pulse1 = [rise on fall];
pulse2 = .5*[rise on fall];

% concatenate and scale the pulses
i = .707*[pulse1 separation pulse2 off];

9

% set the phase of the two pulses
pm = [0*ones(1,length(pulse1)) separation
(pi/2)*ones(1,length(pulse1)) off];

% convert am and pm to i and q
i=.707*am.* cos(pm);
q=.707*am.* sin(pm);

The next example will add a π/2 phase shift (90°) between the two pulses. Note that in
the previous examples, the amplitude envelope was placed in the real array and zeros
were placed in the imaginary array. For signals that require no phase or frequency modu-
lation, that technique works fine and simplifies the math. For this example, the signals
will be specified in terms of an am and pm array and converted into IQ.

The array for pm contains a constant but different phase during the on-time of each
pulse. Pulse1 is set to 0° and pulse2 is set to π/2. Multiplying the am waveform times
the sine or cosine of the pm waveform performs the IQ conversion. The period following
the variable am instructs MATLAB to multiply the arrays on an element by element basis.

Note that in Figure 5 the π/2 phase shift between pulse1 and pulse2 shown in both the
IQ plot and the phase versus time plot.

Figure 5: Screen capture of phase shift between pulses

The following block contains a subset of the code in PM_Doublet.m

Generating Phase Shift
Between Pulses
(PM_Doublet.m)

10

Creating a pulsed waveform with a constant doppler frequency shift requires the introduc-
tion of a new technique. The idea is to build a waveform that contains the doppler offset
frequency from the carrier versus time, then integrate the waveform to produce phase
versus time. Remember that phase is simply the integral of frequency. In Figure 7 an array
fm is produced that contains a constant offset frequency in hertz. The length of the array
is equal to the entire am pulsed waveform. The fm waveform is integrated using the func-
tion cumsum, which is the cumulative sum of the elements of the array. The new array
must be scaled by 2*π/sampclk to obtain units of radians. The am and pm waveforms are
converted into IQ and scaled for downloading into the signal generator.

Note that the math shown in the block below allows the user to specify the doppler offset
frequency in hertz versus time and, given the sample clock in hertz, calculate the pm
waveform. This is very powerful. While this example produces a static doppler offset
within a single pulse, the technique can easily be extended to produce a doppler trajectory
for a moving emitter. The primary limitation of the technique is the 64 MSa of memory
within the signal generator to play the waveforms. With 100 MHz sample clock, the of
memory will allow the production of 640 ms of unique signal.

The following block contains a subset of the code in Doppler.m

Now to discuss the two vector displays of the doppler signal. Figure 6 shows the vector
signal analyzer tuned to the exact center frequency of the signal generator. The phase
versus time plot in the lower right hand corner shows a ramp in phase versus time during
the on-time of the pulse. The IQ display in the lower left hand corner shows an arc of
phase. From the parameters in the doppler.m MATLAB program, the pulse width can be
calculated to be 1 ms and the doppler shift set to 100 KHz. The phase shift generated by a
100 KHz doppler shift over 1 ms should be:

(100 KHz)*(360º/cycle)*(1e–6 sec) = 36º

Note that the displays show 36º of phase shift during the on-time of the pulse.

Creating Doppler Shift
(Doppler.m)

doppler_freq = 100e3; % defines the doppler offset freq in Hz

% define an array which contains the doppler freq in each sample
fm=doppler_freq*ones(1,length(am));

% use an integral to translate from fm to pm
pm=(2*pi/sampclk)*cumsum(fm);

% convert am and pm to i and q and scale amplitude
i=.707*am.* cos(pm);
q=.707*am.* sin(pm);

11

In Figure 7 the vector signal analyzer has been tuned to the doppler offset frequency.
Note that the phase of the pulse is constant and stable over at least two pulses. This
infers that the signal generator and arbitrary waveform generator are coherent with the
vector signal analyzer. This also provides confirmation that the math used to calculate the
doppler waveform is correct.

Figure 6: Doppler signal when VSA is tuned to center frequency of the signal generator

Figure 7: Doppler signal when VSA tuned to dopper offset frequency

12

Having provided examples of simple pulsed waveforms with control of the amplitude and
phase of the pulse, the next step will be to produce modulation within the pulse. Both
phase and frequency modulation are used by radar systems to improve range and resolu-
tion. Radar systems that use modulation within the pulse are referred to as pulse com-
pression radar systems.

The radar range equation points out a basic engineering trade-off between range and res-
olution and the need for pulse compression. To build a long-range radar (or for the radar to
‘see’ a great distance) the radar needs high average output power. To obtain good resolu-
tion, the radar needs a narrow pulse that reduces the average output power. Pulse com-
pression provides a path around this trade-off. Pulse compression radars will transmit a
long pulse with modulation inside the pulse. The returns are processed through a filter
that is matched to the characteristics of the modulation compressing the pulse in time.
This compression allows the radar to separate overlapping returns while transmitting a
high average power.

It is important for elint and radar warning receivers to correctly process these types of
signals. The modulation type and deviation of the signals provide important information
about the purpose and intent of an observed system. It is often difficult to obtain a signal
source with the appropriate characteristics to verify the performance of the elint system.

Building Pulse
Compression Signals

13

Barker coded signals are typical in pulse compression radar systems. Barker codes are
binary numbers containing between 2 and 13 bits that have unique auto correlation func-
tions. The points adjacent to the peak of the correlation function equal zero. This is very
useful in a radar system since any spurious response can be misinterpreted as a target. A
Barker coded pulse typically uses binary phase modulation. The chip rate is the dwell
time for each bit within the pulse. In this example, we will build a 7-bit Barker coded
waveform. The 7-bit Barker code contains the bits [+1 +1 +1 –1 –1 +1 –1].

To build the phase waveform, the seven bits of information must correctly encode into a
binary phase shift keyed waveform and deal with the speed of the phase transitions. The
transition time between phase states will at least, in part, determine the occupied band-
width of the signal.

Within the program, first define the possible phase states and transitions as individual
arrays, and then concatenate them into the final waveform. The two possible states the
waveform can occupy are positive and negative, or +1 and –1. There are four possible
transitions: negative to positive, positive to negative, negative to negative, and positive to
positive. The states are built with a constant value over the chip period. The transitions
are built using raised cosine functions. Note that the array rise was built as part of the am
array, but it is used here as a 0 to 1 phase transition. At the end of the code sequence, the
function rise-1 is used to provide a –1 to 0 transition. Having constructed the array with
+1 and –1 states, multiply the waveform by π/2 to provide the appropriate phase deviation.
The resulting waveform is converted to IQ and downloaded into the signal generator.

The following block contains a subset of the code in Barker.m

Generating a Barker
Coded Pulse (Barker.m)

neg_pos=(1+sin(ramp*pi/2))-1;
pos_neg=(1+sin(-ramp*pi/2))-1;
pos_pos=ones(1,4);
neg_neg=-ones(1,4);
pos=ones(1,13);
neg=-ones(1,13);

pm=(pi/2)*[0 0 0 ...
[rise pos]... %Bit 1 high
[pos_pos pos]... %Bit 2 high
[pos_pos pos]... %Bit 3 high
[pos_neg neg]... %Bit 4 low
[neg_neg neg]... %Bit 5 low
[neg_pos pos]... %Bit 6 high
[pos_neg neg]... %Bit 7 low
rise-1 0 0 off];

i=.707*am.* cos(pm);
q=.707*am.* sin(pm);

14

Figure 8 shows the demodulated signal. The lower right hand plot displays the demodu-
lated phase versus time. Note that during the on-time of the pulse, the seven bits of the
code are clearly visible. Markers may be used to verify the phase state accuracy and tim-
ing. The noise in phase between the pulses is due to the fact that during the off-time of
the pulse the phase of the signal is undefined.

Figure 8: Demodulated signal

To demonstrate a linear fm chirp signal, the objective is to build an fm waveform that will
linearly sweep the frequency across a known deviation. This example uses the technique
introduced in the doppler example that integrates the fm waveform to produce a pm
waveform which can be converted over to IQ. The advantage of this process is that it
allows the user to build waveforms in frequency versus time to create arbitrary fm wave-
forms that can be converted and downloaded into the signal generator.

As the code below illustrates, the fm chirp is built using a ramp that starts at exactly –1
and ends at exactly +1. This allows the user to easily scale the waveform by multiplying
by the desired frequency deviation divided by two. Note that the frequency will sweep
both above and below the carrier frequency. Using the internal arbitrary waveform syn-
thesizer, the signal generator can produce up to an 80 MHz chirp. To eliminate an unnec-
essary frequency step at the beginning and end of the chirp, the fm waveform is held at
the frequency of the chirp endpoints during the rise-time and fall-time of the pulse.

Generating a Linear FM
Chirp (LFM_Chirp.m)

15

In Figure 9 note the demodulated fm waveform in the lower right hand plot. The chirp
is linear and the deviation is equal to the 10 MHz defined in the program (±5 MHz). The
values in the fm demodulator are only defined during the on-time of the pulse. In the
upper right hand plot, note that the amplitude of the pulse is flat during the pulse on-time.
Because the signal is being swept across a 10 MHz frequency span, this indicates the IQ
modulator within the signal generator provides a flat frequency response across that
bandwidth. The spiral effect in the IQ plot in the lower left hand corner is due to the fre-
quency offset from the carrier during the rise and fall time of the pulse.

Figure 9: FM chirp signal

The following block contains a subset of the code in LFM_Chirp.m

chirp_dev = 10e6; % defines the total chirp deviation in Hz

% define an array which contains the chirp waveform
fm=(chirp_dev/2)*([-ones(1,n) (-1:2/(length(on)-1):1) ones(1,n)
ones(1,length(off))]);

% use an integral to translate from fm to pm
pm=(2*pi/sampclk)*cumsum(fm);

% convert am and pm to i and q and scale amplitude
i = .707*am.* cos(pm);
q = .707*am.* sin(pm);

16

The final example will demonstrate how to add a known amount of non-linear distortion
to the fm chirp waveform. The non-linear distortion will be produced by the single cycle of
a sine wave scaled to fit within the on-time of the pulse. The amount of non-linearity is
set by scaling the amplitude of the sine wave as some percentage of the total deviation.
Because the value of the sine wave is zero at its end points the maximum deviation of the
chirp will not change. The resulting S-shape of the waveform is typical of the distortion
seen in non-synthesized chirped signals.

Figure 10: Non-linear fm chirp

The following block contains a subset of the code in NLFM_Chirp.m

Generating a Non-Linear
FM Chirp (NLFM_Chirp.m)

chirp_dev = 10e6; % defines the total chirp deviation in Hz

% create some non-linear distortion to add to the chirp
nonlinear=.2*sin((pi)*(-1:2/(length(on)-1):1));

% add the nonlinearity to the chirp and concatenate the sections
fm=(chirp_dev/2)*([-ones(1,n) nonlinear+(-1:2/(length(on)-1):1)

ones(1,n) ones(1,length(off))]);

% use an integral to translate from fm to pm
pm=(2*pi/sampclk)*cumsum(fm);

% convert am and pm to i and q and scale amplitude
i =.707*am.* cos(pm);
q=.707*am.* sin(pm);

17

% Script file: Pulse.m
%
% Purpose:
% To calculate and download an arbitrary waveform file to generate a
% simple pulsed signal with the PSG vector signal generator.
%
% Record of revisions:
%
% Date Programmer Description of change
% ==== ========== =====================
% 4/15/2002 Randal Burnette Version for 2002 AD Symposium in MatLab/VEE
% 8/14/2002 John Hutmacher Added comments and Download Assistant
% 9/4/2002 Randal Burnette Added Preset, turned ALC off, and IQ Scaling
% 6/26/2003 Randal Burnette Added Modulation ON
%
% Define variables:
%
% n -- counting variable (no units)
% ramp -- ramp from -1 to almost +1; used to build sine waves
% rise -- raised cosine pulse rise-time definition (samples)
% on -- pulse on-time definition (samples)
% fall -- raised cosine pulse fall-time definition (samples)
% off -- pulse off-time definition (samples)
% inphase -- in-phase modulation signal (samples)
% quadrature -- quadrature modulation signal (samples)
% IQData -- complex array containing both i and q waveform samples
% Markers -- array containing markers for Event Markers 1 and 2
% sampclk -- clock freq for the D/A converters in the IQ modulator

sampclk = 100e6; % ARB Sample Clock for playback

n=4; % number of points in the rise & fall time
ramp=-1:2/n:1-2/n; % ramp from -1 to almost +1 over n points
rise=(1+sin(ramp*pi/2))/2; % defines the raised cos rise-time shape
on=ones(1,92); % defines the on-time characteristics
fall=(1+sin(-ramp*pi/2))/2; % defines the raised cos fall-time shape
off=zeros(1,900); % defines the off-time characteristics

% build the pulse envelop
inphase = [rise on fall off];

% plot the i-samples and scale the plot
plot(inphase)
axis ([0 length(inphase) -2 2])

% set the q-samples to all zeroes
quadrature = zeros(1,length(inphase));

% define a composite iq matrix for download to the PSG using the
% PSG/ESG Download Assistant
IQData = [inphase + (j * quadrature)];

Appendix A: Simple pulse

18

% define a matrix and activate a marker for the beginning of the waveform
Markers = zeros(2,length(IQData));%fill Marker array with zero ie. no markers set
Markers(1,1:10) = 1;%set Marker to first ten points of playback

% make a new connection to the PSG over the GPIB interface
io = agt_newconnection('gpib',0,19);

%verify that communication with the PSG has been established
[status, status_description,query_result] = agt_query(io,'*idn?');
if (status < 0) return; end

% preset the instrument
[status, status_description] = agt_sendcommand(io,':STATus:PRESet');

% set carrier frequency and power on the PSG using the PSG Download Assistant
[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency 1e9');
[status, status_description] = agt_sendcommand(io, 'POWer 0');

% put the ALC into manual control
[status, status_description] = agt_sendcommand(io, 'POWer:ALC:STATe OFF');

% set the IQ real time scaling to 70.7% or -3dB
[status, status_description] = agt_sendcommand(io, 'RADio:ARB:RSCaling 70.7');

% download the iq waveform the PSG baseband generator for playback
[status, status_description] = agt_waveformload(io, IQData, 'pulse', sampclk,
'play', 'no_normscale', Markers);

% Turn on modulation
[status, status_description] = agt_sendcommand(io, 'OUTPut:MODulation:STATe ON');

% Turn on RF output power
[status, status_description] = agt_sendcommand(io, 'OUTPut:STATe ON');

Appendix A: Simple pulse (continued)

19

% Script file: Doublet.m
%
% Purpose:
% To calculate and download an arbitrary waveform file to generate a
% doublet (two simple pulses) within a single PRI with the PSG
% vector signal generator.
%
% Record of revisions:
%
% Date Programmer Description of change
% ==== ========== =====================
% 4/15/2002 Randal Burnette Initial version for 2002 AD Symposium
% 8/14/2002 John Hutmacher Added comments and Download Assistant
% 9/4/2002 Randal Burnette Added Preset, turned ALC off, and IQ Scaling
% 6/26/2003 Randal Burnette Added Modulation ON
%
% Define variables:
%
% n -- counting variable (no units)
% ramp -- ramp from -1 to almost +1; used to build sine waves
% rise -- raised cosine pulse rise-time definition (samples)
% on -- pulse on-time definition (samples)
% fall -- raised cosine pulse fall-time definition (samples)
% off -- pulse off-time definition (samples)
% i -- in-phase modulation signal (samples)
% q -- quadrature modulation signal (samples)
% IQData -- complex array containing both i and q waveform samples
% Markers -- array containing markers for Event Markers 1 and 2
% seperation -- array containing the time separation between the pulses

n=4; % defines the number of points in the rise-time & fall-time
ramp=-1:2/n:1-2/n; % ramp from -1 to almost +1 over n points
rise=(1+sin(ramp*pi/2))/2;% defines the raised cos rise-time shape
on=ones(1,120); % defines the on-time characteristics
fall=(1+sin(-ramp*pi/2))/2;% defines the raised cos fall-time shape
off=zeros(1,640); % defines the off-time sample points
seperation=zeros(1,128); % defines the seperation between the pulses

% define arrays which contain the pulse envelope for each pulse
pulse1 = [rise on fall];
pulse2 = .5*[rise on fall];

% concatenate and scale the pulses
i = [pulse1 seperation pulse2 off];

% plot the i-samples and scale the plot
plot(i)
axis ([0 length(i) -2 2])

% set the q-samples to all zeroes
q = zeros(1,length(i));

Appendix B: Pulse doublet

20

% define a composite iq matrix for download to the PSG using the
% PSG/ESG Download Assistant
IQData = [i + (j * q)];

% define a marker matrix and activate a marker to indicate the beginning of the waveform
Markers = zeros(2,length(IQData)); %fill Marker array with zero ie. no markers set
Markers(1,1:10) = 1; %set Marker to first ten points of playback

% make a new connection to the PSG over the GPIB interface
io = agt_newconnection('gpib',0,19);

% verify that communication with the PSG has been established
[status, status_description,query_result] = agt_query(io,'*idn?');
if (status < 0) return; end

% preset the instrument
[status, status_description] = agt_sendcommand(io,':STATus:PRESet');

% set carrier frequency and power on the PSG using the PSG Downlaod Assistant
[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency 1e9');
[status, status_description] = agt_sendcommand(io, 'POWer 0');

% put the ALC into manual control and set the IQ real time scaling
[status, status_description] = agt_sendcommand(io, 'POWer:ALC:STATe OFF');
[status, status_description] = agt_sendcommand(io, 'RADio:ARB:RSCaling 70.7');

% defines the ARB Sample Clock for playback
sampclk = 100000000;

% download the iq waveform the PSG baseband generator for playback
[status, status_description] = agt_waveformload(io, IQData, 'doublet', sampclk, 'play',
'no_normscale', Markers);

% Turn on modulation
[status, status_description] = agt_sendcommand(io, 'OUTPut:MODulation:STATe ON');

% Turn on RF output power
[status, status_description] = agt_sendcommand(io, 'OUTPut:STATe ON');

Appendix B: Pulse doublet (continued)

21

Appendix C: Pulse doublet with phase offset

% Script file: Phase_Offset_Doublet.m
%
% Purpose:
% To calculate and download an arbitrary waveform file to generate a
% doublet (two simple pulses) within a single PRI and that has pi/2
% (or 90 deg) phase offset between the pulses.
%
% Record of revisions:
%
% Date Programmer Description of change
% ==== ========== =====================
% 4/15/2002 Randal Burnette Initial version for 2002 AD Symposium
% 8/14/2002 John Hutmacher Added comments and Download Assistant
% 9/4/2002 Randal Burnette Added Preset, turned ALC off, and IQ Scaling
% 6/26/2003 Randal Burnette Added Modulation ON
%
% Define variables:
%
% n -- counting variable (no units)
% ramp -- ramp from -1 to almost +1; used to build sine waves
% rise -- raised cosine pulse rise-time definition (samples)
% on -- pulse on-time definition (samples)
% fall -- raised cosine pulse fall-time definition (samples)
% off -- pulse off-time definition (samples)
% i -- in-phase modulation signal (samples)
% q -- quadrature modulation signal (samples)
% IQData -- complex array containing both i and q waveform samples
% Markers -- array containing markers for Event Markers 1 and 2
% separation -- array containing the time separation between the pulses
% am -- amplitude envelope for the pulse, linear units
% pm -- phase of the pulse vs time in rads

sampclk = 100e6; % defines the ARB Sample Clock for playback

n=4; % defines the number of points in the rise-time & fall-
time
ramp=-1:2/n:1-2/n; % ramp from -1 to almost +1 over n points
rise=(1+sin(ramp*pi/2))/2; % defines the raised cos rise-time shape
on=ones(1,120); % defines the on-time characteristics
fall=(1+sin(-ramp*pi/2))/2; % defines the raised cos fall-time shape
off=zeros(1,640); % defines the off-time sample points
separation=zeros(1,128); % defines the separation between the pulses

% define arrays which contain the pulse envelope for each pulse
pulse1 = [rise on fall];
pulse2 = .5*[rise on fall];

% concatenate and scale the pulses
am = [pulse1 separation pulse2 off];

% set the phase of the first pulse to 0 rad and the second to pi/2 rad
pm = [0*ones(1,length(pulse1)) separation (pi/2)*ones(1,length(pulse1)) off];

22

Appendix C: Pulse doublet with phase offset (continued)

% plot the amplitude envelope and scale the plot
% plot(am)
% axis ([0 length(am) -2 2])

% convert am and pm to i and q
i = am.* cos(pm);
q = am.* sin(pm);

% define a composite iq matrix for download to the PSG using the
% PSG/ESG Download Assistant
IQData = [i + (j * q)];

% define a marker matrix and activate a marker to indicate the beginning of the waveform
Markers = zeros(2,length(IQData)); %fill Marker array with zero ie. no markers set
Markers(1,1:10) = 1; %set Marker to first ten points of playback

% make a new connection to the PSG over the GPIB interface
io = agt_newconnection('gpib',0,19);

% verify that communication with the PSG has been established
[status, status_description,query_result] = agt_query(io,'*idn?');
if (status < 0) return; end

% preset the instrument
[status, status_description] = agt_sendcommand(io,':STATus:PRESet');

% set carrier frequency and power on the PSG using the PSG Download Assistant
[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency 1e9');
[status, status_description] = agt_sendcommand(io, 'POWer 0');

% put the ALC into manual control and set the IQ real time scaling
[status, status_description] = agt_sendcommand(io, 'POWer:ALC:STATe OFF');
[status, status_description] = agt_sendcommand(io, 'RADio:ARB:RSCaling 70.7');

% download the iq waveform the PSG baseband generator for playback
[status, status_description] = agt_waveformload(io, IQData, 'phase_offset',
sampclk, 'play', 'no_normscale', Markers);

% Turn on modulation
[status, status_description] = agt_sendcommand(io, 'OUTPut:MODulation:STATe ON');

% Turn on RF output power
[status, status_description] = agt_sendcommand(io, 'OUTPut:STATe ON');

23

Appendix D: Pulse with doppler frequency offset

% Script file: Doppler.m
%
% Purpose:
% To calculate and download an arbitrary waveform file that simulates a
% simple pulse signal with a fixed doppler frequency offset from the
% center frequency of the signal generator using IQ modulation.
%
% Record of revisions:
%
% Date Programmer Description of change
% ==== ========== =====================
% 4/15/2002 Randal Burnette Initial version for 2002 AD Symposium
% 8/14/2002 John Hutmacher Added comments and Download Assistant
% 9/4/2002 Randal Burnette Added Preset, turned ALC off, and IQ Scaling
% 6/26/2003 Randal Burnette Added Modulation ON
%
% Define variables:
%
% n -- counting variable (no units)
% ramp -- ramp from -1 to almost +1; used to build sine waves
% rise -- raised cosine pulse rise-time definition (samples)
% on -- pulse on-time definition (samples)
% fall -- raised cosine pulse fall-time definition (samples)
% off -- pulse off-time definition (samples)
% i -- in-phase modulation signal (samples)
% q -- quadrature modulation signal (samples)
% IQData -- complex array containing both i and q waveform samples
% Markers -- array containing markers for Event Markers 1 and 2
% am -- amplitude envelope for the pulse, linear units
% pm -- phase of the pulse vs time in rads
% fm -- offset frequency from carrier vs time in Hz
% sampclk -- clock freq for the D/A converters in the IQ modulator
% doppler_freq -- doppler offset frequency in Hz

sampclk = 100e6; % defines the ARB Sample Clock for playback
doppler_freq = 100e3; % defines the doppler offset freq in Hz

n=4; % defines the number of points in the rise & fall time
ramp=-1:2/n:1-2/n; % ramp from -1 to almost +1 over n points
rise=(1+sin(ramp*pi/2))/2; % defines the raised cos rise-time shape
on=ones(1,92); % defines the on-time characteristics
fall=(1+sin(-ramp*pi/2))/2; % defines the raised cos fall-time shape
off=zeros(1,900); % defines the off-time sample points

% concatenate the parts of the amplitude of the pulse into a single array
am = [rise on fall off];

% plot the am-samples and scale the plot
% plot(am)
% axis ([0 length(am) -2 2])

24

% define an array which contains the the doppler freq in each sample
fm=doppler_freq*ones(1,length(am));

% use an intergral to translate from fm to pm
pm=(2*pi/sampclk)*cumsum(fm);

% convert am and pm to i and q
i= am.* cos(pm);
q= am.* sin(pm);

% define a composite iq matrix for download to the PSG using the
% PSG/ESG Download Assistant
IQData = [i + (j * q)];

% define a marker matrix and activate a marker to indicate the beginning of the waveform
Markers = zeros(2,length(IQData)); %fill Marker array with zero ie. no markers set
Markers(1,1:10) = 1; %set Marker to first ten points of playback

% make a new connection to the PSG over the GPIB interface
io = agt_newconnection('gpib',0,19);

% verify that communication with the PSG has been established
[status, status_description,query_result] = agt_query(io,'*idn?');
if (status < 0) return; end

% preset the instrument
[status, status_description] = agt_sendcommand(io,':STATus:PRESet');

% set carrier frequency and power on the PSG using the PSG Downlaod Assistant
[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency 1e9');
[status, status_description] = agt_sendcommand(io, 'POWer 0');

% put the ALC into manual control and set the IQ real time scaling
[status, status_description] = agt_sendcommand(io, 'POWer:ALC:STATe OFF');
[status, status_description] = agt_sendcommand(io, 'RADio:ARB:RSCaling 70.7');

% download the iq waveform the PSG baseband generator for playback
[status, status_description] = agt_waveformload(io, IQData, 'doppler',
sampclk, 'play', 'no_normscale', Markers);

% Turn on modulation
[status, status_description] = agt_sendcommand(io, 'OUTPut:MODulation:STATe ON');

% Turn on RF output power
[status, status_description] = agt_sendcommand(io, 'OUTPut:STATe ON');

Appendix D: Pulse with doppler frequency offset (continued)

25

% Script file: Barker.m
%
% Purpose:
% To calculate and download an arbitrary waveform file that simulates a
% simple 7 bit barker RADAR signal to the PSG vector signal generator.
%
% Record of revisions:
%
% Date Programmer Description of change
% ==== ========== =====================
% 4/15/2002 Randal Burnette Initial version for 2002 AD Symposium
% 8/14/2002 John Hutmacher First draft
% 9/4/2002 Randal Burnette Added Preset, turned ALC off, and IQ Scaling
% 6/26/2003 Randal Burnette Added Modulation ON
%
%
% Define pulse variables:
%
% n -- counting variable (no units)
% ramp -- ramp from -1 to almost +1; used to build sine waves
% rise -- raised cosine pulse rise-time definition (samples)
% on -- pulse on-time definition (samples)
% fall -- raised cosine pulse fall-time definition (samples)
% off -- pulse off-time definition (samples)
% i -- in-phase modulation signal (samples)
% q -- quadrature modulation signal (samples)
% pm -- phase modulation
% sampclk -- clock freq for the D/A converters in the IQ modulator
% neg_pos -- transition from low bit to high bit
% pos_neg -- transition form high bit to low bit
% pos_pos -- defines high bit
% neg_neg -- defines low bit
% pos -- defines high bit
% neg -- defines low bit

sampclk = 100e6; % defines the ARB Sample Clock for playback

n=4; % defines the number of points in the rise-time & fall-time
ramp=-1:2/n:1-2/n; % number of points translated to time
rise=(1+sin(ramp*pi/2))/2; % defines the pulse rise-time shape
on=ones(1,120); % defines the pulse on-time characteristics
fall=(1+sin(-ramp*pi/2))/2; % defines the pulse fall-time shape
off=zeros(1,896); % defines the pulse off-time characteristics
am=[rise on fall off]; % defines the pulse envelope

neg_pos=(1+sin(ramp*pi/2))-1; %
pos_neg=(1+sin(-ramp*pi/2))-1;
pos_pos=ones(1,4);
neg_neg=-ones(1,4);
pos=ones(1,13);
neg=-ones(1,13);

Appendix E: Pulse with barker code

26

pm=(pi/2)*[0 0 0 ...
[rise pos]... %Bit 1 high
[pos_pos pos]... %Bit 2 high
[pos_pos pos]... %Bit 3 high
[pos_neg neg]... %Bit 4 low
[neg_neg neg]... %Bit 5 low
[neg_pos pos]... %Bit 6 high
[pos_neg neg]... %Bit 7 low
rise-1 0 0 off];

% plot the pm-samples and scale the plot
plot(pm)
axis ([0 length(pm) -2 2])

% convert am and pm to i and q
i= am.* cos(pm);
q= am.* sin(pm);

% define a composite iq matrix for download to the PSG using the
% PSG/ESG Download Assistant
IQData = [i + (j * q)];

% define a marker matrix and activate a marker to indicate the beginning of the waveform
Markers = zeros(2,length(IQData)); %fill Marker array with zero ie. no markers set
Markers(1,1:10) = 1; %set Marker to first ten points of playback

% make a new connection to the PSG over the GPIB interface
io = agt_newconnection('gpib',0,19);

% verify that communication with the PSG has been established
[status, status_description,query_result] = agt_query(io,'*idn?');
if (status < 0) return; end

% preset the instrument
[status, status_description] = agt_sendcommand(io,':STATus:PRESet');

% set carrier frequency and power on the PSG using the PSG Download Assistant
[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency 1e9');
[status, status_description] = agt_sendcommand(io, 'POWer 0');

% put the ALC into manual control and set the IQ real time scaling
[status, status_description] = agt_sendcommand(io, 'POWer:ALC:STATe OFF');
[status, status_description] = agt_sendcommand(io, 'RADio:ARB:RSCaling 70.7');

% download the iq waveform the PSG baseband generator for playback
[status, status_description] = agt_waveformload(io, IQData, 'barker',
sampclk, 'play', 'no_normscale', Markers);

% Turn on modulation
[status, status_description] = agt_sendcommand(io, 'OUTPut:MODulation:STATe ON');

% Turn on RF output power
[status, status_description] = agt_sendcommand(io, 'OUTPut:STATe ON');

Appendix E: Pulse with barker code (continued)

27

% Script file: LFM_Chirp.m
%
% Purpose:
% To calculate and download an arbitrary waveform file that simulates a
% pulsed signal with a linear fm chirp to the PSG vector signal generator.
%
% Record of revisions:
%
% Date Programmer Description of change
% ==== ========== =====================
% 4/15/2002 Randal Burnette Initial version for 2002 AD Symposium
% 8/14/2002 John Hutmacher Added comments and Download Assistant
% 9/4/2002 Randal Burnette Added Preset, turned ALC off, and IQ Scaling
% and corrected fm to pm integration calc
% 6/26/2003 Randal Burnette Added Modulation ON
%
% Define variables:
%
% n -- counting variable (no units)
% ramp -- ramp from -1 to almost +1; used to build sine waves
% rise -- raised cosine pulse rise-time definition (samples)
% on -- pulse on-time definition (samples)
% fall -- raised cosine pulse fall-time definition (samples)
% off -- pulse off-time definition (samples)
% ontime -- total number of points in the rise + on + fall
% i -- in-phase modulation signal (samples)
% q -- quadrature modulation signal (samples)
% IQData -- complex array containing both i and q waveform samples
% Markers -- array containing markers for Event Markers 1 and 2
% am -- amplitude envelope for the pulse, linear units
% pm -- phase of the pulse vs time in rads
% fm -- offset frequency from carrier vs time in Hz
% sampclk -- clock freq for the D/A converters in the IQ modulator
% chirp_dev -- total chirp frequency deviation in Hz

sampclk = 100e6; % defines the ARB Sample Clock for playback
chirp_dev = 10e6; % defines the total chirp deviation in Hz

n=4; % defines the number of points in the rise-time & fall-time
ramp=-1:2/n:1-2/n; % ramp from -1 to almost +1 over n points
rise=(1+sin(ramp*pi/2))/2; % defines the raised cos rise-time shape
on=ones(1,92); % defines the on-time characteristics
fall=(1+sin(-ramp*pi/2))/2; % defines the raised cos fall-time shape
off=zeros(1,900); % defines the off-time sample points

% concatenate the parts of the amplitude of the pulse into a single array
am = [rise on fall off];

% define an array which contains the the chirp waveform
fm=(chirp_dev/2)*([-ones(1,n) (-1:2/(length(on)-1):1) ones(1,n) ones(1,length(off))]);

% use an integral to translate from fm to pm
pm=(2*pi/sampclk)*cumsum(fm);

Appendix F: Pulse with linear fm chirp

28

% plot the fm-samples and scale the plot
plot(fm);
axis ([0 length(fm) -10e6 10e6]);

% convert am and pm to i and q and scale amplitude
i = am.* cos(pm);
q = am.* sin(pm);

% define a composite iq matrix for download to the PSG using the
% PSG/ESG Download Assistant
IQData = [i + (j * q)];

% define a marker matrix and activate a marker to indicate the beginning of the
waveform
Markers = zeros(2,length(IQData)); %fill Marker array with zero ie. no markers set
Markers(1,1:10) = 1; %set Marker to first ten points of playback

% make a new connection to the PSG over the GPIB interface
io = agt_newconnection('gpib',0,19);

% verify that communication with the PSG has been established
[status, status_description,query_result] = agt_query(io,'*idn?');
if (status < 0) return; end

% preset the instrument
[status, status_description] = agt_sendcommand(io,':STATus:PRESet');

% set carrier frequency and power on the PSG using the PSG Download Assistant
[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency 1e9');
[status, status_description] = agt_sendcommand(io, 'POWer 0');

% put the ALC into manual control and set the IQ real time scaling
[status, status_description] = agt_sendcommand(io, 'POWer:ALC:STATe OFF');
[status, status_description] = agt_sendcommand(io, 'RADio:ARB:RSCaling 70.7');

% download the iq waveform the PSG baseband generator for playback
[status, status_description] = agt_waveformload(io, IQData, 'lfm', sampclk,
'play', 'no_normscale', Markers);

% Turn on modulation
[status, status_description] = agt_sendcommand(io, 'OUTPut:MODulation:STATe ON');

% Turn on RF output power
[status, status_description] = agt_sendcommand(io, 'OUTPut:STATe ON');

Appendix F: Pulse with linear fm chirp (continued)

29

% Script file: NLFM_Chirp.m
%
% Purpose:
% To calculate and download an arbitrary waveform file that simulates a
% pulsed signal with a non-linear fm chirp to the PSG vector signal generator.
%
% Record of revisions:
%
% Date Programmer Description of change
% ==== ========== =====================
% 4/15/2002 Randal Burnette Initial version for 2002 AD Symposium
% 8/14/2002 John Hutmacher Added comments and Download Assistant
% 9/4/2002 Randal Burnette Added Preset, turned ALC off, and IQ Scaling
% 6/26/2003 Randal Burnette Added Modulation ON
%
% Define variables:
%
% n -- counting variable (no units)
% ramp -- ramp from -1 to almost +1; used to build sine waves
% rise -- raised cosine pulse rise-time definition (samples)
% on -- pulse on-time definition (samples)
% fall -- raised cosine pulse fall-time definition (samples)
% off -- pulse off-time definition (samples)
% ontime -- total number of points in the rise + on + fall
% i -- in-phase modulation signal (samples)
% q -- quadrature modulation signal (samples)
% IQData -- complex array containing both i and q waveform samples
% Markers -- array containing markers for Event Markers 1 and 2
% am -- amplitude envelope for the pulse, linear units
% pm -- phase of the pulse vs time in rads
% fm -- offset frequency from carrier vs time in Hz
% sampclk -- clock freq for the D/A converters in the IQ modulator
% chirp_dev -- total chirp frequency deviation in Hz

sampclk = 100e6; % defines the ARB Sample Clock for playback
chirp_dev = 10e6; % defines the total chirp deviation in Hz

n=4; % defines the number of points in the rise-time & fall-
time
ramp=-1:2/n:1-2/n; % ramp from -1 to almost +1 over n points
rise=(1+sin(ramp*pi/2))/2; % defines the raised cos rise-time shape
on=ones(1,92); % defines the on-time characteristics
fall=(1+sin(-ramp*pi/2))/2; % defines the raised cos fall-time shape
off=zeros(1,900); % defines the off-time sample points

% concatenate the parts of the amplitude of the pulse into a single array
am = [rise on fall off];

% define an array which contains the the non-linearity of the chirp waveform
% the non-linearity is in the form of one cycle of a sine wave across the
% chirp.
nonlinear=.2*sin((pi)*(-1:2/(length(on)-1):1));

Appendix G: Pulse with non-linear fm chirp

30

% add the nonlinearity to the chirp and concatenate the other sections
fm=(chirp_dev/2)*([-ones(1,n) nonlinear+(-1:2/(length(on)-1):1) ones(1,n)
ones(1,length(off))]);

% plot the fm-samples and scale the plot
plot(fm);
axis ([0 length(fm) -10e6 10e6]);

% use an integral to translate from fm to pm
pm=(2*pi/sampclk)*cumsum(fm);

% convert am and pm to i and q and scale amplitude
i = am.* cos(pm);
q = am.* sin(pm);

% define a composite iq matrix for download to the PSG using the
% PSG/ESG Download Assistant
IQData = [i + (j * q)];

% define a marker matrix and activate a marker to indicate the beginning of the
waveform
Markers = zeros(2,length(IQData)); %fill Marker array with zero ie. no markers set
Markers(1,1:10) = 1; %set Marker to first ten points of playback

% make a new connection to the PSG over the GPIB interface
io = agt_newconnection('gpib',0,19);

% verify that communication with the PSG has been established
[status, status_description,query_result] = agt_query(io,'*idn?');
if (status < 0) return; end

% preset the instrument
[status, status_description] = agt_sendcommand(io,':STATus:PRESet');

% set carrier frequency and power on the PSG using the PSG Download Assistant
[status, status_description] = agt_sendcommand(io, 'SOURce:FREQuency 1e9');
[status, status_description] = agt_sendcommand(io, 'POWer 0');

% put the ALC into manual control and set the IQ real time scaling
[status, status_description] = agt_sendcommand(io, 'POWer:ALC:STATe OFF');
[status, status_description] = agt_sendcommand(io, 'RADio:ARB:RSCaling 70.7');

% download the iq waveform the PSG baseband generator for playback
[status, status_description] = agt_waveformload(io, IQData, 'nlfm', sampclk,
'play', 'no_normscale', Markers);

% Turn on modulation
[status, status_description] = agt_sendcommand(io, 'OUTPut:MODulation:STATe ON');

% Turn on RF output power
[status, status_description] = agt_sendcommand(io, 'OUTPut:STATe ON');

Appendix G: Pulse with non-linear fm chirp (continued)

31

Online The source code for the examples used in this paper along with Download Assistant for
MATLAB 6.5 or later can be downloaded from the Agilent Web site
www.agilent.com/find/psg.

MATLAB is a U.S. registered trademark of
The Math Works, Inc.

Agilent Technologies’ Test and Measurement Support, Services, and Assistance
Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We
strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you
need. Our extensive support resources and services can help you choose the right Agilent products for your
applications and apply them successfully. Every instrument and system we sell has a global warranty.
Support is available for at least five years beyond the production life of the product. Two concepts underlie
Agilent’s overall support policy: “Our Promise” and “Your Advantage.”

Our Promise
Our Promise means your Agilent test and measurement equipment will meet its advertised performance and
functionality. When you are choosing new equipment, we will help you with product information, including
realistic performance specifications and practical recommendations from experienced test engineers.
When you use Agilent equipment, we can verify that it works properly, help with product operation,
and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon
request. Many self-help tools are available.

Your Advantage
Your Advantage means that Agilent offers a wide range of additional expert test and measurement services,
which you can purchase according to your unique technical and business needs. Solve problems efficiently
and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty
repairs, and onsite education and training, as well as design, system integration, project management, and
other professional engineering services. Experienced Agilent engineers and technicians worldwide can help
you maximize your productivity, optimize the return on investment of your Agilent instruments and systems,
and obtain dependable measurement accuracy for the life of those products.

www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

Agilent T&M Software and Connectivity
Agilent’s Test and Measurement software and connectivity products, solutions and developer network allows
you to take time out of connecting your instruments to your computer with tools based on PC standards, so
you can focus on your tasks, not on your connections. Visit www.agilent.com/find/connectivity
for more information.

By internet, phone, or fax, get assistance with all your test & measurement needs

Online Assistance:
www.agilent.com/find/assist

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2003
Printed in USA, December 4, 2003
5988-9212EN

Phone or Fax
United States:
(tel) 800 452 4844
Canada:
(tel) 877 894 4414
(fax) 905 282 6495
China:
(tel) 800 810 0189
(fax) 800 820 2816

Europe:
(tel) (31 20) 547 2323
(fax) (31 20) 547 2390
Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840
Korea:
(tel) (82 2) 2004 5004
(fax) (82 2) 2004 5115

Latin America:
(tel) (305) 269 7500
(fax) (305) 269 7599
Taiwan:
(tel) 0800 047 866
(fax) 0800 286 331
Other Asia Pacific Countries:
(tel) (65) 6375 8100
(fax) (65) 6836 0252
Email: tm_asia@agilent.com

Agilent Email Updates

